Как подобрать 3D-принтер под ваши задачи
Даже самые лучшие дешёвые 3D–принтеры потребительского уровня способны печатать объекты, размеры которых не превышает размера буханки хлеба, а более дешевые модели обладают ещё более скромными возможностями: обычно пространство для печати измеряется несколькими сантиметрами для каждой из сторон. Однако такие принтеры способны создавать объекты удивительной прочности, гладкости и чёткости, а это может очень пригодиться в домашних условиях, как для изготовления оригинальных крючков для одежды и солонок для соли, так и специфических деталей и запчастей, которые трудно найти в продаже.
Принтеры из акриловых деталей (оргстекла), которые в большом ассортименте можно встретить на прилавках Aliexpress, в действительности являются не более чем одноразовыми игрушками. Недолговечная пластиковая конструкция способствует образованию люфтов, косяков и проблем. Если вы серьезно относитесь к своему хобби, или 3D-принтер приобретается как профессиональный инструмент, лучшим выбором для начала знакомства с 3D-печатью будут примеры из этой статьи.
FDM 3D–принтеры начального уровня. Цена: 15.000 – 30.000 ₽
Это самые дешевые 3D–принтеры, которые представлены простыми моделями, эти модели мы рекомендуем в качестве лучших 3D–принтеров из бюджетных вариантов. Процесс печати основан на моделировании методом послойного наплавления FDM (Fused deposition modeling). Пластиковая нить плавится, а затем наносится тонкими слоями, создавая модель. Бюджетные принтеры оснащаются одним соплом для выдавливания нити. В последнее время все чаще появляются SLA DLP принтеры, которые очень скоро сравняются по стоимости с FDM. К примеру, Anycubic Photon Zero — бюджетный фотополимерный LCD 3D-принтер
Они печатают медленно, им часто требуется много часов для того, чтобы воспроизвести один объект, и они печатают на ограниченной номенклатуре материалов.
- Достоинства: низкая стоимость, простые принтеры являются идеальным вариантом для первоначального знакомства с процессом 3D–печати. Они, как правило, сравнительно просты в установке и настройке.
- Недостатки: 3D–принтеры этого типа не оснащены закрытой камерой, конструкция хоть выглядит надежно, часто даже используется стальная рама. Отсутствие закрытого корпуса сразу накладывает ограничение по испльзованию видов пластика: PLA, SBS, PETG — пожалуй это всё чем они могут печатать без приложения изрядного шаманства.
- Основные характеристики и расходные материалы: большинство принтеров этого типа обладают базовым программным обеспечением, но некоторые поставляются вообще без какого-либо программного обеспечения, и тем самым заставляют вас искать решения с открытым исходным кодом. В процессе печати обычно используются 1,75 миллиметровая нить, которая широко доступна в богатом цветовом ассортименте в виде катушек. Капризные материалы с высокой температурой плавления и коффициентом термической усадки ABS, HIPS, NYLON, , и другие — теоретически можно настроить печать, но придется выдумывать закрытый корпус, модернизировать экструдер и т.д.
Классификация 3D принтеров (7 технологий 3D печати)
На хабре уже были статьи о технологиях печати, которые используют 3D принтеры, однако в данной статье я постарался подойти к вопросу системно, чтобы в голове у читателя сложилась четкая картина о том, какие принципы заложены в технологии 3D печати, какие материалы используются и в конечном итоге какую технологию лучше использовать для получения определенного результата, будь то деталь из титана, или мастер-модель для последующего тиражирования. Статья основана на книге Fabricated: The New World of 3D printing
I. Те которые что-то выдавливают или выливают или распыляют
1) FDM (fused deposition modeling)
принтеры которые выдавливают какой-то материал слой за слоем через сопло-дозатор, не буду расписывать подробно, мы про них все знаем. Все мэйкерботоподобные принтеры + принтеры Stratasys + различные кулинарные принтеры (используют глазурь, сыр, тесто) + медицинские которые печатают “живыми чернилами” (когда какой-либо набор живых клеток помещается в специальный медицинский гель которые используется далее в биомедицине)
2) Технология Polyjet
, была изобретена израильской компанией Objet в 2000 г. в 2012 их купили Stratasys. Суть технологии: фотополимер маленькими дозами выстреливается из тонких сопел, как при струйной печати, и сразу полимеризуется на поверхности изготавливаемого девайса под воздействием УФ излучения. Важная особенность, отличающая PolyJet от стереолитографии, является возможность печати различными материалами. Преимущества технологии: а) толщина слоя до 16 микрон (клетка крови 10 микрон) б) быстро печатает, так как жидкость можно наносить очень быстро. Недостатки технологии: а) печатает только с использованием фотополимера — узко-специализированный, дорогой пластик, как правило, чувствительный к УФ и достаточно хрупкий. Применение: промышленное прототипирование и медицина
3) LENS (LASER ENGINEERED NET SHAPING)
Материал в форме порошка выдувается из сопла и попадает на сфокусированный луч лазера. Часть порошка пролетает мимо, а та часть, которая попадает в фокус лазера мгновенно спекается и слой за слоем формирует трехмерную деталь. Именно по такой технологии печатают стальные и титановые объекты. Поскольку до появления этой технологии печатать можно было только объекты из пластика, к 3D печати особенно серьезно никто не относился, а эта технология, открыла двери для 3D печати в “большую” промышленность. Порошки различных материалов можно смешивать и получать таким образом сплавы, на лету. Применение: например, титановые лопатки для турбин с внутренними каналами охлаждения. Производитель оборудования: Optomec
4) LOM (laminated object manufacturing)
Тонкие ламинированные листы материала вырезаются с помощью ножа или лазера и затем спекаются или склеиваются в трехмерный объект. Т.е. укладывается тонкий лист материала, который вырезается по контуру объекта, таким образом получается один слой, на него укладывается следующий лист и так далее. После этого все листы прессуются или спекаются. Таким образом печатают 3D модели из бумаги, пластика или из алюминия. Для печати моделей из алюминия используется тонкая алюминиевая фольга, которая вырезается по контуру слой за слоем и затем спекается с помощью ультразвуковой вибрации.
II. Те которые что-то спекают или склеивают
1) SL (Stereolithography)
Стереолитография. Есть небольшая ванна с жидким полимером. Луч лазера проходит по поверхности, и в этом месте полимер под воздействием УФ полимеризуется. После того как один слой готов платформа с деталью опускается, жидкий полимер заполняет пустоту далее запекается следующий слой и так далее. Иногда происходит наоборот: платформа с деталью поднимается вверх, лазер соответственно расположен снизу… После печати таким методом, требуется постобработка объекта — удаление лишнего материала и поддержки, иногда поверхность шлифуют. В зависимости от необходимых свойств конечного объекта модель запекают в т.н. ультрафиолетовых духовках. Фотополимер зачастую бывает токсичным поэтому при работе с ним нужно пользоваться средствами защиты и респираторами. Содержать и обслуживать такой принтер дома — сложно и дорого Преимущества: быстро и точно, точность до 10 микрон. Для спекания фотополимера достаточно лазера от Blu-ray проигрывателя, благодаря чему на рынке появляются дешевые при этом точные принтеры работающие по такой технологии (e.g. Form1).
2) LS (laser sintering)
Лазерное спекание. Похоже на SL, только вместо жидкого фотополимера используется порошок, который спекается лазером. Преимущества: а) менее вероятно, что деталь сломается в процессе печати, так как сам порошок выступает надежной поддержкой б) материалы в порошковой форме довольно легко найти в продаже в том числе это могут быть: бронза, сталь, нейлон, титан Недостатки: а) поверхность получается пористая б) некоторые порошки взрывоопасны, поэтому должны храниться в камерах, заполненных азотом в) спекание происходит при высоких температурах, поэтому готовые детали долго остывают, в зависимости от размера и толщины слоев, некоторые предметы могут остывать до одного дня.
3) 3DP (three dimensional printing)
Технология изобретена в 1980 году в MIT студентом Paul Williams, технология была продана в несколько коммерческих организаций, одна из которых — zCorp, в настоящее время поглощена 3D Systems. На материал в порошковой форме наносится клей, который связывает гранулы, затем поверх склеенного слоя наносится свежий слой порошка, и так далее. На выходе, как правило, получается материал sandstone (похожий по свойствам на гипс) Преимущества: а) так как используется клей, в него можно добавить краску и таким образом печатать цветные объекты б) технология относительна дешевая и энергоэффективная в) можно использовать в условиях дома или офиса в) можно печатать использовать порошок стекла, костный порошок, переработанную резину, бронзу и даже древесные опилки. Используя похожу технологию можно печатать съедобные объекты например из сахара или шоколадного порошка. Порошок склеивается специальным пищевым клеем, в клей может добавляться краситель и ароматизатор. Как пример, новые 3D принтеры от компании 3D systems, которые были продемонстрированы на CES 2014 — ChefJet и ChefJet Pro Недостатки: а) на выходе получается достаточно грубая поверхность, с невысоким разрешение ~ 100 микрон б) материал нужно подвергать постобработке (запекать), чтобы придать ему необходимые свойства.
Надеюсь материал будет для вас полезен. Дополнения принимаются.
Профессиональные FDM 3D–принтеры. Цена: от 100.000 – 200.000 ₽
Более сложные принтеры, использующие технологию FDM-печати, такие как Picaso, Ultimaker, Zenit, Hercules, обладают дополнительными функциональными возможностями (по сравнению с 3D–принтерами начального уровня): например, они оснащаются несколькими экструдерами и способны работать с более тонкими слоями (до 0,1 миллиметра) и печатать более гладкие объекты.
- Достоинства: увеличенная площадь печати позволяет воспроизводить более объёмные объекты (по сравнению с более простыми аналогами). Несколько экструдеров дают возможность использовать различные цвета и материалы поддержки во время печати одного и того же объекта. Закрытая камера печати дает преимущество по используемыми материалами.
- Недостатки: более высокая стоимость. Наличие более сложной конструкции и комплектующих может означать, что ещё больше деталей способно выйти из строя во время интенсивной работы.
- Основные характеристики и расходные материалы: ключевыми факторами являются количество экструдеров (встроенных или доступных при модернизации) и улучшенное вертикальное или Z-разрешение. Эти модели, как правило, оснащаются платформой печати увеличенного размера, который часто достигает 30 x 30 x 30 сантиметров. Выбор расходных материалов значительно широкий: ABS, PLA, HIPS, SBS, PC, PA, FLEX и другие.
FDM или FFF
Технология FDM (fused deposition modeling) подразумевает под собой печать с помощью сопла-дозатора, из которого выдавливается какой-либо материал и постепенно наносится на объект слой за слоем, выстраивая трехмерную модель. В качестве материалов для этого вида 3d печати чаще всего выступают пластики (в виде нитей на катушке), но не только. Например, FDM принтеры можно использовать в качестве кулинарного помощника (в этом случае заправляется глазурь, сыр, тесто и др. необходимые для блюда компоненты) или FDM принтер можно использовать в медицине (в этом случае заправляется специальный медицинский гель с набором живых клеток — как правило, используется в биомедицине). Технология FDM печати была разработана С. Скоттом Трампом еще в конце 80-ых годов прошлого века и на рынок вышла в 1990 году. Другое название этой технологии печати FFF (Fused Filament Fabrication) или «Производство методом наплавления нитей» — оно было придумано для обхода юридических ограничений для аббревиатуры FDM, которая принадлежит компании Stratasys. Этот вид 3d принтеров наиболее распространен в качестве бытовых 3d принтеров, так как является наименее затратным в обслуживании. В производстве FDM принтеры чаще всего применяются для быстрого прототипирования или быстрого моделирования объектов, например, мелкосерийной партии каких-либо деталей. В быту такие принтеры могут использоваться для самых различных целей, например, для печати игрушек, сувениров или украшений.
SLA 3D–принтеры на базе стереолитографии. Около 100.000 ₽
Новинкой на рынке 3D–принтеров являются модели на базе лазерной стереолитографии или SLA-принтеры, такие как Form или B9 Creator. Они используют для печати светочувствительную смолу и цифровой проектор или лазер. Под воздействием света смола затвердевает. Платформа печати затем опускается, и свет формирует следующий слой; так происходит до тех пор, пока объект не будет завершен полностью. Такие принтеры способны воспроизводить объекты с очень высоким разрешением, но количество цветов ограничено: Form может печатать серым и прозрачным (бесцветным), другие принтеры также способны предложить небольшой ассортимент цветовой гаммы.
- Достоинства: очень высокое разрешение, гладкая печать с точностью воспроизводимых элементов до 0,030 сантиметра и толщиной слоев 0,003 сантиметра.
- Недостатки: Процесс печати, как правило, медленне, чем у моделей, построенных на базе технологией FDM. Ограниченный диапазон цвета, в связи с новизной технологий сам принтер и смола для печати отличаются достаточно высокой стоимостью.
- Основные характеристики и расходные материалы: стоимость принтера и виды смолы являются ключевыми факторами — в настоящее время смола для Form стоит 20.000 – 30.000 ₽ за литр, и доступна только в бесцветном и сером вариантах. Стоит обратить внимание на размер платформы печати: большинство 3D–принтеров оснащаются платформами небольшого размера: около 15 x 13 x 13 сантиметров.
Порошковые 3D принтеры. Ценовой диапазон: от 600.000 ₽ и выше
Другой подход — это порошковая печать, в данном случае мелкодисперсный порошок наносится на поверхность, а затем либо лазер спекает (расплавляет) порошок (процесс, называется выборочным лазерным спеканием SLS) или растворитель, разжижает порошок, в результате чего он схватывается, формируя слой. Преимущество порошковой печати заключается в том, что она может работать с широким перечнем материалов, включая металлы, стекло и пластик. Это единственные принтеры, которые способны создавать цветные 3D–объекты, получаемые путём смешивания порошков различных цветов.
Порошковые принтеры сложнее в разработке, и им необходим либо мощный лазер, либо растворитель, именно этим и объясняется их дороговизна. Например, Zprinter 150 до сих пор считается устройством коммерческого класса, и его стоимость составляет 800.000 ₽. Терпеливые энтузиасты могут получить доступ к этой технологии по более доступной цене: собрав собственное устройство с помощью открытого исходного проекта экспериментального порошкового принтера.
- Достоинства: принтер может создавать объекты в нескольких индивидуальных (пользовательских) цветах, получаемых путём смешивания порошков различных цветов. Некоторые модели могут печатать с помощью металлических порошков.
- Недостатки: в настоящее время порошковое принтеры, либо очень дорогие, либо доступны только как проекты с открытым исходным кодом, которые вы можете попробовать собрать самостоятельно. Материалы для печати также дорогие.
- Основные характеристики и расходные материалы: как и в случае со всеми остальными 3D–принтерами — необходимо учитывать размер печатной платформы и стоимость печати. Если вам придётся приобретать печатный материал, который изготавливает единственная компания (как в случае с моделями ZCorp), то вам необходимо учесть его стоимость в своих расчетах, так как этот материал, как правило, стоит довольно дорого.
Каталог 3D-принтеров →
SL (Stereolithography)
Главная идея стереолитографии (SLA или SL) заключается в том, что жидкий фотополимер застывает под воздействием УФ излучения — модель постепенно опускается в некий объем расходного материала, выравнивается и обрабатывается УФ лучами, что заставляет фотополимерную жидкость застывать в местах соприкосновения с лучом. Для печати в данной технологии используются фотополимерные смолы, которые, к сожалению, стоят недешево. Это, пожалуй, главный недостаток данной технологии. Преимуществ у стереолитографии гораздо больше: высокая точность деталей (толщина до 10 микрон), относительно высокая скорость печати, не требует какой-либо особой обработки после печати, можно печатать модели с самой сложной геометрией. Область применения данных видов 3d принтеров самая разнообразная — от промышленности до бытового использования.